REVIEW PROBLEMS 3rd PART TOPIC (b)

4.014.024.034.044.054.064.074.084.094.104.114.124.134.144.154.164.174.184.194.204.214.224.234.244.25 -

REVIEW_4.01b.- The firm Landa presents the following information related to production, costs and sales revenue OUTCOMES: BEP = 466.67; Profit = - 4,750; P = 57.17 - - SOLUTIONS: a, b y c

1. Calculate the firm’s break-even point, explain the economic meaning of the obtained outcome and indicate in what units it’s expressed

2. Calculate the firm’s profit or loss if it produces and sells 150 units of product

3. Determinate the sale price that the firm should set ir it want its break-even point to be in 150 units of production

 PRODUCED UNITS SALES REVENUE FIXED COSTS TOTAL COSTS 0 0 7,000 7,000 100 2,550 7,000 8,050 200 5,100 7,000 9,100 300 7,650 7,000 10,150 400 10,200 7,000 11,200 500 12,750 7,000 12,250

REVIEW_4.02b.- The firm Bay’s Manufactures, Ltd acquires its raw material at an unit price of 3€/kg. The firm needs 10.7 tonnes. For each realised order, the firm has ones expenses of 500€ and the average time to receive the order is six days. The account department has calculated that each stored kilograme means an annual total cost of 7€. The firm works 350 days annually. – We want to know: OUTCOMES: Optimal order quantity = 1,236.35; Time 40.44 days; Stock level to do a new order = 183.43 - - SOLUTIONS: a, b y c

1. The optimal order quantity

2. How often do we need to realise the order, and

3. Which is the stock level to do a new order

REVIEW_4.03b.- According to the data of the accounts of X, Ltd: the total cost are 125,000 m.u., the fixed costs are 10,000 m.u., the sales revenue are 230,000 m.u., the firm has sold 100,000 units of product: OUTCOMES: BEP = 8,695.65;- - SOLUTIONS: a y b

1. Calculate the break-even point, explain the economic meaning of the outcome and indicate in which units it is expressed

2. Make the chart of the total, variable and fixed costs and revenue for the following values of Q: inactivity, break-even point, sales units

REVIEW_4.04b.- A firm wants to know if its productivity has increased or has decreased in the year 2008-09. In order to that, we know that during the year 2008 the firm has manufactured 100,000 products of series A, being its unit price of 1.2€ and 50,000 products of series B, being its unit price of 3.4€. To manufacture the products have worked five workers with 1,500 hours each one at 9€/hour and the firm has consumed 5,000 units of materials at 10€/unit. During 2009 the manufacture of the products has increased 2% and the consumption of factors has increased 5%. The number of workers and the prices have not changed: OUTCOMES: P2008 = 2.47; P2009 = 2.40; GPI = 0.9717 - - SOLUTIONS: a y b

1. Calculate the productivity of each year

2. Calculate the global productivity index

REVIEW_4.05b.- A corporation wants to sell 20,000 units of a certain type of jeans. In order to that it can produce them itself or to acquire them to a textile factory. The acquisition price of the jeans to the textile factory is 3€/pair. To produce these units the corporation has ones total costs of 40,000€, belonging 30,000 to variable costs. Determine: OUTCOMES: AC = 60,000, PC = 40,000 - - SOLUTIONS: a y b

1. The best option

2. Chart

REVIEW_4.06b.- The firm RASURSA had last year a staff of 100 workers, each one of them worked 1,200 hours, reaching a production of 3,000,000 produced units of the product X. During this year it has had a staff of 120 workers, each one of them has worked 1,250 hours, being the production of this year 3,100,000 produced units of the product X: OUTCOMES: P0 = 25; P1 = 20.67 - - SOLUTIONS: a y b

1. Calculate the labour productivity in the periods 0 and 1

2. Analyze the evolution of the labour productivity

REVIEW_4.07b.- Calculate the break-even point of a firm and the time to obtain it if its sales volume is 130,000€, being 10,000 the number of produced and sold units and 100,000€ the total costs, belonging 25,000€ to fixed costs. Express the solution in euros and in units of product. OUTCOMES: BEP = 4,545.45 p.u.; BEP = 59,090.85€; Time = 5 months and 14 days - -

REVIEW_4.08b.- The firm Furniture, Ltd wants to know its productivity, in order to that it wants to know the productivity of both two periods (0 and 1), and the global productivity index according to the following data: OUTCOMES: P0 = 119.02; P1 = 140.25; GPI = 1.1784 - -

 Factors of production Factors Quantities (F) Prices (f) Period 0 Period 1 Period 0 Period 1 Labour 1,000 h/man 1,100 h/man 9€ 10€ Machinery 3,000 h/mac 2,500 h/mac 30€ 32€ Material 5,000Kgs. 4,000 Kgs. 0.7€ 0.9€ Production Products Quantities (Q) Prices (P) Period 0 Period 1 Period 0 Period 1 Chairs 100,000 120,000 50€ 55€ Tables 80,000 70,000 90€ 95€

REVIEW_4.09b.- Determine the sales volume in which a firm that produces and sells the product X, loses 5,000 m.u. if: OUTCOME = 80,000 -

1. The fixed costs are 13,000 m.u.

2. The variable costs are 90% above sales

REVIEW_4.10b.- A firm has the following information about its economic activity: the operating total cost of its activity was 50,000€. The produced and sold units were 3,000 physical units. The firm’s Share Capital is 300,000€, calculate: OUTCOMES: P = 26.67; BEP = 1,000 - - SOLUTIONS: a y b

1. The sale price of the products to obtain a profitability of 10% above the firm’s share capital

2. Knowing that 30% of the total costs are fixed costs and the rest are variable costs, determine the break-even point

REVIEW_4.11b.- A firm produces shelves with an industrial component. The firm can obtain this component in two ways: either manufacturing the component or acquiring it to another company that sells it at 70€ each unit. The production in the own factory would mean an annual fixed cost of 100,000€ and the unit variable cost of each component would be 65€. Each shelves needs 30 industrial components to its production. To what annual volume of production is it preferable to manufacture the industrial component or to buy it? OUTCOME = 666.67 -

REVIEW_4.12b.- A firm tries to launch to the market a new chair. It has two alternatives: a) To manufacture them, which will mean a fixed cost of 180,000€ and an unit variable cost of 300€/unit and b) To acquire them to a factory and to market them with its own brand, which would mean an acquisition cost of 1,200€/unit: OUTCOMES: a) 200; Profit = - 9,000 - SOLUTIONS: a, b y c

1. Explain in which case the firm is going to manufacture the chairs and when is going to buy them

1. If the firm produces 190 units, which will be the obtained profit or loss?

2. Make the chart

REVIEW_4.13b.- A firm, that produces computers, thinks about to produce or to acquire the computer circuit board. In the market the circuit board can by acquired at 200€. It makes a research to know the production costs, with the following data: the fixed costs would be 800,000€ and the unit variable cost would be 2€. The firm produces and sells 4,000 computers annually. What would have to do the firm, either to produce it or to buy it? OUTCOMES: AC = 800,000; PC = 808,000 -

REVIEW_4.14b.- The firm “Tricycle” produces bicycles. This firm sells 180,000 bicycles annually, at a price of 300€ each one. Its unit margin (the difference between the sale price and the unit variable costs) is 60€ and its total fixed costs are 3,000,000€. OUTCOMES: BEP = 50,000; Increase = 9,000,000 - SOLUTIONS: a y b

1. Calculate the break-even point, interpreting the obtained outcome

2. In order to try to improve its profit, the firm has decided to increase the price of the bicycles in 50€. How is going to affect this decision to the firm's profit, if the number of units sold is maintained?

REVIEW_4.15b.- A firm manufactures 30,000 units of the product A at 40€/unit and 40,000 units of product B at 25€/unit. The consumed factors to manufacture these products are in the following table: OUTCOMES: P1 = 10; P2 = 20; P3 = 30; P4 = 26.67- -

 FACTORS A B COST Labour 3,000 hours man 2,000 hours man 30€ Machines 1,000 hours machine 1,500 hour machine 50€
1. Calculate the productivity of each factor per product.

2. Explain its meaning and compare them

REVIEW_4.16b.- The firm “Solsuero” manufactured and consumed the following products and factors for 2008 and 2009. OUTCOMES: Profit = 5,600,000; P0 = 1.67; P1 = 1.60; GPI = 0.9581 - SOLUTIONS: a y b

 Year 2008 Prices 2008 Year 2009 Product A 100,000 p.u. 40€/p.u. (Sale) 120,000 p.u. Product B 200,000 p.u. 50€/p.u. (Sale) 180,000 p.u. Factor X 150,000 Kgs. 20€/Kg. (Cost) 130,000 Kgs. Factor Y 180,000 Kgs. 30€/Kg (Cost) 200,000 Kgs.

We want to know:

1. Calculate the profit of the year 2008 if the firm has sold all the produced units.

2. Calculate the global productivity of each year and compare them

REVIEW_ 4.17b.- The sales volume in 2009 is 500,000€, being its production 10,000 units and its production costs the following:

Labour ..................................................................200,000€

Raw material.........................................................100,000€

Fixed costs............................................................ 80,000€

Determine the break-even point, expressing the outcome in euros and in units of product and comment the obtained outcome. OUTCOMES: BEP = 4,000 p.u.; BEP = 200,000 -

REVIEW_4.18b.- The firm “M” manufactured and sold last year 27,000 tables being its total revenue 900,000€. The fixed costs were 35% above total revenue and the variable costs were 30% above this revenue. Calculate its break-even point both in physical units and in monetary units. OUTCOMES: 13,501.93 p.u.; BEP = 450,019.33 m.u.

REVIEW_4.19b.- The firm X produced and sold 29,000 units of kitchens being its total revenue 18 million euros. The fixed cost were 5,000,000€. The firm's profit has been 8,000,000€. Calculate the break-even point and comment its meaning. OUTCOMES: BEP = 11,153.74

REVIEW 4.20b.- A firm produces electronic components being the production cost: C = 50Q + 20; where Q is the number of produced components and C is the production cost in euros: OUTCOMES: a) See the solution; b) See the solution; c) 50.21; d) 19,980; e) 0.57

1. Which is the fixed cost and the unit variable cost of production?

2. Which is the average cost of production according to the number of produced units?

3. If the firm produces 95 units. Which is the cost per produced unit?

4. If the unit sale price is 70€. Which is the obtained profit of the firm for Q = 1,000 units?

5. Below which number of units of Q, the firm would have a loss being the sale price 85€/unit?

REVIEW 4.21b.- A firm that is going to begin its working has to decide about the size of the technological equipment to install, being able to choose between two sizes. The production cost of the small equipment is TCS = 60 + 10Q, and the production cost of the big one is TCB = 200 + Q OUTCOMES: See solutions

1. Which is the fixed cost of each equipment?

2. Which is the unit variable cost of each equipment?

3. If it plans to produce 300 units of Q. Which is the best equipment to install?

REVIEW 4.22b.- In a firm, the sales volume is 25,000 units that generates a total revenue of 430,000€ that involves a fixed cost of 210,000€ and a total variable cost of 150,000€. How many units would I have to sell if I want a profit of 300,000€? OUTCOME: 45,535.71

REVIEW 4.23b.- A firm produces chairs. The productive process includes the assembly and the painting. It produced 10,000 chairs last year, total costs were 1,820,000 €, being 1,500,000 fixed costs. The firm is think about the possibility of buying the chairs previously assembled this year. This option means to acquire the chairs at 165 € per unit. What decision must the firm make if the output of this year is 11,500 chairs? Calculate the production costs and the acquisition costs OUTCOMES: Production costs = 1,868,000; Acquisition costs = 1,897,500 SOLUTION 4.23b

REVIEW 4.24b.- A firm had a total amount of sales of 5,000,000 € last year, being the sale price of each unit of product 290 €. Total variable costs were in that year 1,250,000 and total fixed costs 2,300,000 € OUTCOMES: BEP = 10,574.71; PROFIT = -233,750 SOLUTION 4.24b

1. Calculate the break-even point and explain the economic meaning of the outcome

2. Calculate the profit of the loss that the firm would have if it had a sales of 9,500 physical units

REVIEW 4.25b.- A firm produces two products, the model OLIVAR and the model NARANJO. The data of the output in 2009 are in the following table: OUTPUT: GP = 1.46 SOLUTION 4.25b

Cost of the workers

Cost of the machines

Units OLIVAR

Units NARANJO

Year 2009

75.000,00 €

57.000,00 €

810 p.u.

980 p.u.

If the prices in 2009 were 130 € for the model OLIVAR and 90 for the model NARANJO, calculate the global productivity

SOLUTION 4.01b.-

4.01 a)

Q = TFC : (P – UVC)

TC = TFC + (UVC x Q)

8,050 = 7,000 + UVC x 100

8,050 – 7,000 = 100 UVC

1,050 = 100 UVC

1,050 : 100 = UVC = 10.5 monetary units

TR = P x Q

2,550 = P x 100

2,550 : 100 = P = 25.5 monetary units

Q = 7,000 : (25.5 – 10.5) = 466.67 physical units

If we produce and sell more than 466.67 physical units we are going to obtain a profit, if we produce and sell less than this quantity we are going to have a loss

4.01 b)

Profit = TR – TFC – UVC x Q

Profit = P x Q – TFC – UVC x Q

Profit = 25.5 x 150 – 7,000 – 10.5 x 150 = - 4,750 monetary units

4.01 c)

Q = TFC : (P – UVC)

150 = 7,000 : (P – 10.5)

150 x (P – 10.5) = 7,000

150 P – (150 x 10.5) = 7,000

150 P – 1,575 = 7,000

150 P = 7,000 + 1,575

150 P = 8,575

P = 8,575 : 150 = 57.17 monetary units

SOLUTION 4.02b.-

4.02 a)

Q* = sqrt [(2 x D x S) : H]

Q* = sqrt [(2 x 500 x 10,700) : 7] = 1,236.35 kgs.

4.02 b)

10,700.00 kgs. - - - - 350 days

1,236.35 kgs. - - - - x days

x = 40.44 days = 40 days

4.02 c)

10,700 kgs. - - - - 350 days

x kgs. - - - - 6 days

x = 183.43 kgs.

SOLUTION 4.03b.-

4.03 a)

Q = TFC : (P – UVC)

TC = TFC + (UVC x Q)

125,000 = 10,000 + UVC x 100,000

125,000 – 10,000 = 100,000 UVC

115,000 = 100,000 UVC

115,000 : 100,000 = UVC = 1.15 monetary units

TR = P x Q

230,000 = P x 100,000

230,000 : 100,000 = P = 2.3 monetary units

Q = 10,000 : (2.3 – 1.15) = 8,695.65 units of product

4.03 b)

Qmax = 8,695.65 x 2 = 17,391.30 but as we sell 100,000 => Qmax = 100.000

TRmax = 2.3 x 100.000 = 230.000

TR0 = 2.3 x 0 = 0

TRBEP = 2.3 x 8,695.65 = 20,000 monetary units

TC0 = 10,000 + (1.15 x 0) = 10,000 monetary units

TCBEP = 10,000 + (1.15 x 8,695.65) = 20,000 monetary units

TVC0 = 1.15 x 0 = 0

TVCBEP = 1.15 x 8,695.65 = 10,000 monetary units

SOLUTION 4.04b.-

4.04 a)

GP0 = [(100,000 x 1.2) + (50,000 x 3.4)] : [(5 x 1,500 x 9) + (5,000 x 10)]

GP0 = 290,000 : 117,500 = 2.47

GP1 = (290,000 x 1.02) : (117,500 x 1.05)

GP1 = 295,800 : 123,375 = 2.40

4.04 b)

GPI2008-2009 = 2.40 : 2.47 = 0.9717 => Decreases 2.83%

SOLUTION 4.05b.-

4.05 a)

AC = P x Q

AC = 3 x 20,000 = 60,000€

PC = 40,000€

4.05 b)

TFC = TC – TVC

TFC = 40,000 – 30,000 = 10,000€

UVC = TVC : Q

UVC = 30,000 : 20,000 = 1.5€

Q = TFC : (P – UVC)

Q = 10,000 : (3 – 1.5) = 6,666.67 p.u.

Qmax = 6,666.67 x 2 = 13,333.33 more or less 15,000

ACmax = 3 x 15,000 = 45,000€

AC0 = 3 x 0 = 0

ACBEP = 3 x 6,666.67 = 20,000.01€

PC0 = 10,000 + 1.5 x 0 = 10,000€

PCBEP = 10,000 + 1.5 x 6,666.67 = 20,000.05€

SOLUTION 4.06b.-

4.06 a)

P0 = 3,000,000 : (100 x 1,200) = 25 produced units / hour man

P1 = 3,100,000 : (120 x 1,250) = 20.67 produced units / hour man

4.06 b)

Last year we produced 25 units per each hour man and now we produce only 20.67 units, therefore the labour productivity has decreased

SOLUTION 4.07b.-

TR = P x Q

130,000 = P x 10,000

130,000 : 10,000 = P = 13€

TC = TFC + UVC x Q

100,000 = 25,000 + UVC x 10,000

100,000 – 25,000 = 10,000 UVC

75,000 = 10,000 UVC

75,000 : 10,000 = UVC = 7.5€

Q = TFC : (P – UVC)

Q = 25,000 : (13 – 7.5) = 4,545.45 physical units

TR = 13 x 4,545.45 = 59,090.85€

10,000.00 ---------------------- 12 m

4,545.45 ---------------------- x m x = 5.45 m

1.00 m ------------------------------- 30 d

0.45 m ------------------------------- x d x = 13.5 = 14 d.

The firm is going to reach the break-even point in 5 months and 14 days

SOLUTION 4.08b.-

GP0 = [(100,000 x 50) + (80,000 x 90)] : [(1,000 x 9) + (3,000 x 30) + (5,000 x 0.7)]

GP0 = 12,200,000 : 102,500 = 119.02

GP1 = [(120,000 x 50) + (70,000 x 90)] : [(1,100 x 9) + (2,500 x 30) + (4,000 x 0.7)]

GP1 = 12,300,000 : 87,700 = 140.25

GPI0-1 = 140.25 : 119.02 = 1.1784

SOLUTION 4.09b.-

Profit = TR– TFC – TVC

- 5,000 = TR – 13,000 – 0.9 TR

13,000 – 5,000 = TR – 0.9 TR

8,000 = 0.1 TR

8,000 : 0.1 = TR = 80,000€

SOLUTION 4.10b.-

4.10 a)

Profit = P x Q – TC

300,000 x 0.1 = P x 3,000 – 50,000

30,000 = 3,000 P – 50,000

30,000 + 50,000 = 3,000 P

80,000 = 3,000 P

80,000 : 3,000 = P = 26.67€

4.10 b)

TFC = 50,000 x 0.3 = 15,000€

TVC = 50,000 x 0.7 = 35,000€

UVC = 35,000 : 3,000 = 11.67€

Q = 15,000 : (26.67 – 11.67) = 1,000 physical units

SOLUTION 4.11b.-

Q = TFC : (P – UVC) = 100,000 : [(70 x 30) – (65 x 30)]

Q = 666.67 shelves

SOLUTION 4.12b.-

4.12 a)

Q = TFC : (P – UVC)

Q = 180,000 : (1,200 – 300) = 200 physical units

4.12 b)

AC = P x Q = 1,200 x 190 = 228,000€

PC = TFC + UVC x Q = 180,000 + (300 x 190) = 237,000€

Profit = 228,000 – 237,000 = - 9,000€

4.12 c)

Qmax = 200 x 2 = 400

ACmax = 400 x 1,200 = 480,000€

AC0 = 1,200 x 0 = 0

ACBEP = 1,200 x 200 = 240,000€

PC0 = 180,000 + 300 x 0 = 180,000€

PCBEP = 180,000 + 300 x 200 = 240,000€

SOLUTION 4.13b.-

AC = 200 x 4,000 = 800,000€

PC = 800,000 + (2 x 4,000) = 808,000€

SOLUTION 4.14b.-

4.14 a)

Q = 3,000,000 : 60 = 50,000 bicycles

4.14 b)

UVC = 300 – 60 = 240€

Profit = P x Q – TFC – UVC x Q

Profit before = (300 x 180,000) – 3,000,000 – (240 x 180,000) = 7,800,000€

Profit after = (350 x 180,000) – 3,000,000 – (240 x 180,000) = 16,800,000€

Increase = 9,000,000€

SOLUTION 4.15b.-

Labour productivity A = 30,000 : 3,000 = 10 produced units / hour man

Labour productivity B = 40,000 : 2,000 = 20 produced units / hour man

Machinery productivity A = 30,000 : 1,000 = 30 produced units / hour machine

Machinery productivity B = 40,000 : 1,500 = 26.67 produced units / hour machine

SOLUTION 4.16b.-

4.16 a)

Profit = TR – TC

Profit = [(100,000 x 40) + (200,000 x 50)] – [(150,000 x 20) + (180,000 x 30)]

Profit = 14,000,000 – 8,400,000 = 5,600,000€

4.16 b)

P2008 = [(100,000 x 40) + (200,000 x 50)] : [(150,000 x 20) + (180,000 x 30)] = 1.67

P2009 = [(120,000 x 40) + (180,000 x 50)] : [(130,000 x 20) + (200,000 x 30)] = 1.60

GPI2008-2009 = 1.60 : 1.67 = 0.9581

The global productivity has decreased 4.19%

SOLUTION 4.17b.-

UVC = TVC : Q

UVC = (200,000 + 100,000) : 10,000 = 30€

TR = P x Q

500,000 = P x 10,000

500,000 : 10,000 = P = 50€

Q = TFC : (P – UVC) = 80,000 : (50 – 30) = 4,000 physical units

TR = 4,000 x 50 = 200,000€

SOLUTION 4.18b.-

TFC = 900,000 x 0.35 = 315,000

TVC = 900,000 x 0.3 = 270,000

UVC = 270,000 : 27,000 = 10

P = 900,000 : 27,000 = 33.33

Q = 315,000 : (33.33 – 10) = 13,501.93 p.u.

TR = P x Q = 33.33 x 13,501.93 = 450,019.33 m.u.

SOLUTION 4.19b.-

Profit = TR – TFC – UVC x Q

8,000,000 = 18,000,000 – 5,000,000 – UVC x 29,000

29,000 UVC = 18,000,000 – 5,000,000 – 8,000,000

29,000 UVC = 5,000,000

UVC = 5,000,000 : 29,000 = 172.41

TR = P x Q

18,000,000 = P x 29,000

P = 18,000,000 : 29,000 = 620.69

Q = TFC : (P – UVC) = 5,000,000 : (620.69 – 172.41) = 11,153.74 kitchens

If we produce and sell more than 3,656.69 kitchens we ha a profit, otherwise we have a loss

SOLUTION 4.20b.-

a.-

TFC = 20 UVC = 50

b.-

Average cost = TC : Q = (50Q + 20) : Q = 50 + (20 : Q)

c.-

Average cost 95 = (50 x 95 + 20) : 95 = 50.21

d.-

Profit = P x Q – TFC – UVC x Q

Profit = 70 x 1,000 – 20 – 50 x 1,000 = 70,000 – 20 – 50,000 = 19,980

e.-

Q = TFC : (P – UVC) = 20 : (85 – 50) = 0.57

SOLUTION 4.21b.-

a.-

TFCs = 60; TFCb = 200

b.-

UVCs = 10; UVCb = 1

c.-

TCs = 60 + 10 x 300 = 3,060

TCb = 200 + 300 = 500

SOLUTION 4.22b.-

TR = P x Q

430,000 = P x 25,000

P = 430,000 : 25,000 = 17.2

UVC = TVC : Q = 150,000 : 25,000 = 6

Profit = P x Q – TFC – UVC x Q

300,000 = 17.2 Q – 210,000 – 6 Q

300,000 + 210,000 = 17.2 Q – 6 Q

510,000 = 11.2 Q

Q = 510,000 : 11.2 = 45,535.71 p.u.

SOLUTION 4.23b.-

TC = TFC + UVC x Q

1,820,000 = 1,500,000 + UVC x 10,000

1,820,000 – 1,500,000 = UVC x 10,000

320,000 = UVC x 10,000

320,000 : 10,000 = UVC = 32 €

Production costs = TFC + UVC x Q

Production costs = 1,500,000 + 32 x 11,500 = 1,868,000 €

Acquisition costs = P x Q

Acquisition costs = 165 x 11,500 = 1,897,500 €

The firm would produce the chair because it's cheaper

SOLUTION 4.24b.-

TR = P x Q

5,000,000 = 290 x Q

5,000,000 : 290 = Q = 17,241.38 physical units

TVC = UVC x Q

1,250,000 = UVC x 17,241.38

1,250,000 : 17,241.38 = UVC = 72.5 €

Q = TFC : (P – UVC)

Q = 2,300,000 : (290 – 72.5) = 10,574.71 physical units

PROFIT = P x Q – TFC – UVC x Q

PROFIT = 290 X 9,500 – 2,300,000 – 72.5 X 9,500 = -233,750 €

The firm would have a loss of 233,750 €

SOLUTION 4.25b.-

GP = [(P1 x Q1) + (P2 x Q2) + . . . + (Pn x Qn)] : [(f1 x F1) + (f2 x F2) + . . . + (fn x Fn)]

GP = [(810 x 130) + (980 x 90)] : (75.000 + 57.000) = 1.46